
Introduction

“Greenhouse effect” was fi rst proposed by Swedish 
scientist Svante Ahrrenius, and it was proved that the 
Greenhouse effect is attributed largely to carbon emissions 
as the principal infl uence on the global socioeconomic 
system and ecosystem [1, 2]. Consequently, the control of 
CO2 emissions has attracted increasing attention due to its 
important impact on climate change mitigation.

China has been the largest CO2 emitter in the world 
over the past six years, accounting for more than 25% 

of the total emissions all around the world in 2009 [3] 
and covering 27% of global emissions in 2012 [4]. The 
Beijing-Tianjin-Hebei region, as one of new economic 
support zones in China, plays an important role in the 
development of China. Since 2000, the GDP in this 
region has grown at an average of 15.8 percent per 
annum, population has doubled, and urbanization level 
has reached 58%. Unfortunately, the CO2 emissions have 
been increasing over time. CO2 emissions in the Beijing-
Tianjin-Hebei region increased from 357.87 million to 
803.19 million tons with an average rise rate of 7% during 
2000-12. Therefore, seeking a suitable mode to satisfy 
both development demand and low carbon emissions is 

Pol. J. Environ. Stud. Vol. 25, No. 2 (2016), 823-834

   Original Research    

The Peak Value of Carbon Emissions 
in the Beijing-Tianjin-Hebei Region Based 

on the STIRPAT Model and Scenario Design 

  Lei Wen, Yanjun Liu*

Department of Economics and Management, North China Electric Power University,  
B  aoding, Hebei, 071003, China

 

Received: 30 July 2015
Accepted: 3 January 2016

Abstract

The main objective of this paper was seeking suitable scenarios for the Beijing-Tianjin-Hebei region, 
where both socio-economic development and low-carbon targets would be achieved. Potential driven 
factors of carbon emissions, including population, affl uence, urbanization level, technology level, industrial 
construction, and energy consumption constructio  n were selected to build an extended stochastic impacts by 
regression on population, affl uence, and technology (STIRPAT) model, where ridge regression was applied 
to ensure its stability. The STIRPAT model showed the signifi cance of each independent variable, which 
was the foundation of CO2 emissions’ prediction. Furthermore, eight scenarios were established to explore 
the possible carbon footprints and the maximum of CO2 in the period from 2013 to 2050. This paper fi nally 
proposed the strategies that can be applied to reduce future carbon emissions in the Beijing-Tianjin-Hebei 
region. Applying reasonable policies about improvement of technological level, and adjustment of industry 
and energy consumption structures is a critical factor for the control of CO2 emissions. 

Keywords: carbon emissions, STIRPAT model, ridge regression, scenario analysis

DOI: 10.15244/pjoes/61244

*e-mail: fastgu@163.com



824 Wen L., Liu Y.

imperative for the region. The problem of carbon emissions 
should be respond for its environmental sustainability.

At present, the conversion factors of emissions and 
the peak of CO2 emissions have been researched by 
several studies. The stochastic impacts by regression on 
population, affl uence, and technology (STIRPAT) model 
is one of the most popular measures used in studies about 
CO2 emissions. STIRPAT was proposed by Dietz and Rosa 
[5, 6] as an improvement of the IPAT model. Since then, a 
lot of studies were undertaken to research the relationship 
between emissions and its possible driven factors based 
on this model. 

The STIRPAT model can be rewritten as a linear 
model through a (natural) logarithmic transformation. 
The parameters of the linear model were usually obtained 
by ordinary least square (OLS) regression, whereas 
the regression coeffi cients of each variable obtained 
by the OLS would be very unstable as the impact of 
multicollinearity among independent variables. The 
partial least square (PLS) method and ridge regression can 
be used to avoid this adverse effect, which was proposed 
respectively by Wold et al. [7] and by Hoerl and Kennard 
[8]. 

The novelty of this paper lies in its studies of future 
carbon footprints and maximum emissions under different 
scenarios in the Beijing-Tianjin-Hebei region. These 
scenarios would be set based on an improved STIRPAT 
model, which is established through ridge regression 
according to analysis of regional current situations to help 
local governments fi gure out the main point to ensure 
the decrease of CO2 emissions before 2050. Moreover, 
the distinctions among these scenarios can be a guide to 
testify to the best development mode and the implications 
of policies toward low-carbon economies. 

The rest of the article is organized as follows: 
 – Section 2 provides a briefl y introduce of the existing 

literature.
 – Section 3 presents the main models used: measurement 

of CO2 emissions, the STIRPAT model, ridge 
regression.

 – Section 4 performs main empirical results.
 – Section 5 designs eight scenarios for the Beijing-

Tianjin-Hebei region and predicts the variations of 
driven variables in each scenario.

 – The development strategies for low CO2 emissions are 
listed in Section 6.

 – Finally, Section 5 concludes the article.

Literature Review

  At present, the conversion factors of emissions and the 
peak of CO2 emissions have been researched by several 
studies. Kenny and Gray described the curve of CO2 
emissions in Ireland by fi ve driven factors, which were 
r  esearched through six different models [9]. The concept 
“peak of energy consumption” was proposed by Sun in 
1999 [10]. In addition, more attention has been paid to 
the trend of China’s prospective CO2 emissions as well as 

potential capability to reduce carbon emissions. China’s 
CO2 emissions are expected to rise rapidly in the coming 
decade according to trend analysis [11]. China’s CO2 
emissions will increase up to 2020, and the potential for 
reduction is great [12]. China’s Energy Research Institute 
(ERI) predicted the energy demand of China and Carbon 
Emissions Scenarios Analysis in 2050 using the IPAC-
SGM model, which tries to correlate the output of main 
energy-intensive products with the sector’s total economic 
consumption [13]. The Tyndall Center listed several 
possible states for China in 2050 involving its economic 
and social development under the fi xed carbon budget [14]. 
Be  sides, although there were great discrepancies among 
their results, LBNL, McKinsey, and UNDP adopted the 
top-down approach and set different scenarios that were 
all China-based models without specifi c global targets to 
explore China’s potentia  l CO2 emissions trajectories to 
2050 [2, 15, 16]. 

In the 1970s Ehrlich and Holden fi rst put forward a 
model to analyze the impacts of human activities on the 
environment aimed at controling environmental pressures 
[17], namely the IPAT model: I=P×A×T. IPAT specifi es 
three key driving forces for environmental change: 
population(P), affl uence (A), and technology(T).

As a follow-up study, Waggoner and Ausubel [18] 
further disaggregated a fourth variable – C (the intensity 
of energy use) into per unit of GDP (A) and impact per 
unit of consumption (T) – so that a new model called 
ImPACT was set. Although ImPACT advanced the IPAT 
model in allowing room for diagnostic analysis, both were 
equations with fi xed factors assuming proportionality 
between the key determinant factors, which limit further 
application of the models. Moreover, the effects of the 
driving forces are usually nonlinear and non-proportional, 
causing adverse impact to the application of IPAT and 
ImPACT. To overcome these limitations, a new model 
named STIRPAT was proposed by Dietz and Rosa, which 
gives a chance to introduce more variables during analysis 
and is much more fl exible to test the impacts of each factor 
on environmental pressures.

According to the basic STIRPAT model, many new 
factors were added considering their infl uence on carbon 
emissions. Song et al. [19] concluded that population, 
GDP per capita, industrial structure, energy consumption 
intensity, and energy consumption structure are the 
important impact factors of carbon emissions through a 
STIRPAT model. New research showed that urbanization 
increases energy consumption and CO2 emissions in China 
[20]. York et al. found urbanization and industrialization 
were associated with high impacts on CO2 emissions by 
a refi ned STIRPAT model [21]. In addition, STIRPAT 
combined with PLS regress analysis was adapted to prove 
that urbanization level had the greatest interpretative 
ability for CO2 emissions [22]. Lin et al. [23] tried to 
expand the basic model with urbanization factor through 
China’s data analysis from 1978 to 2006, and it was 
demonstrated that urbanization level was of secondary 
importance to the impact on CO2 emissions. In this paper, 
an extended STIRPAT model can be used to predict the 
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peak value of CO2 emissions in future decades, and Ridge 
regression would be used to deal with multi-collinearity. 
Ridge regression has been applied in several different 
research aspects, such as environmental science [24] and 
software cost dataset [25], to overcome this problem. 
Ridge regression was also used to fi t the extended 
STIRPAT model to examine the impact factors of CO2 
emissions in Guangdong Province [26].

Methodology 

Measurement of CO2 Emissions 

Carbon emissions (unit: million tons) is worked out on 
the basis of various energy consumption found from the 
Beijing, Tianjin, Hebei, and Chinese statistical yearbooks. 
The specifi c formula released by 2006 IPCC guidelines is: 

  (1)

…where CE is the total amount of carbon emissions, 
Ev refrs to the vth kind of primary energy consumption, 
NCV denotes net calorifi c value, CECv is carbon 
emissions coeffi cient of the vth kind of primary energy 
consumption, COF indicates carbon oxidation factor (and 
the recommended value is normally 100% according to 
2006 IPCC guidelines), and s represents departments. It is 
obvious that the carbon emissions under various sectors or 
diverse technological levels are co-determined by NCV, 
CEC, and COF. 

STIRPAT Model

The general format of the STIRPAT model can be 
specifi ed as follows:

                        (2)
Being a non-linear model, the natural logarithm can be 

taken on STIRPAT to analyze the non-proportional impacts 
on the environment. The new formula is as follows:

       (3)

…where I denotes environmental impact; population (P) 
elasticity, affl uence (A) elasticity, and technology (T) 
elasticity are respectively taken as the decisive factors; a 
is a constant; and b, c, and d are the coeffi cients for P, A, 
and T. The subscript t indicates the year and e across the 
error term.

The STIRPAT method has been applied in many 
papers to investigate the impacts of driving forces on CO2 
emissions. Except for the basic exponents of P, A, and 
T, industrial structure, energy consumption intensity and 
urbanization were considered extra driven factors of CO2 
emissions using the STIRPAT model. 

In this paper the extended STIRPAT model is built 
with six factors to estimate carbon emissions. Considering 
the results of several studies about Kuznets curve theory 
[27], there is no longer a linear relationship between 
economic development and carbon emissions, and the 
square term of economic development has been included 
in studies. Aiming at avoiding zero or negative indicators, 
many studies have worked on a (natural) logarithmic 
transformation of environmental degradation and square 
term of economic development [28]. Besides, the carbon 
footprint of energy in Shanghai was studied to explore 
the relationship between carbon footprint and economic 
development with an expanded model including both 
the affl uence (A) and the square term [29]. According to 
all of the information, the fi nal formula in this paper is 
expressed as follows:

       (4)

…where CE illustrates the scale of CO2 emissions; 
A2 refers to the squared term of GDP per capita; P 
and T, respectively, denote population (year-end) and 
technological levels; UR is the urbanization level; ES 
refers to energy structure; and I means industrial level. 
The variables are described in Table 1.

Table 1. Explanation of variables used in this paper.

Symbol Variable Defi nition Unit of measurement

CE CO2 emissions Total carbon emissions 10,000 tons

A Affl uence level GDP per capita Yuan in constant 2000 price

P Population population size 10,000 units

T Technological level CO2 emissions per unit of GDP ton/104 Yuan

UR Urbanization level The ratio of urban population in total over total population %

ES Energy structure The proportion of non-fossil energy to total energy consumption %

I Industrial level The secondary industry share of GDP %
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In this paper the STIRPAT model was applied not only 
to show the impacts of the driving forces on CO2 emissions 
in the Beijing-Tianjin-Hebei region over the last 13 years 
in the survey stage, but also to forecast the peak value of 
CO2 emission under different scenarios.

Ridge Regression

The classical multiple linear regression model is given 
[30, 31] by:

Y = Xβ + ε                                (5)

…where Y is a (n×1) matrix of dependent variables and 
X is a (n×p) array of independent variables. β is a (p×1) 
vector of coeffi cients and ε notes the normally distributed 
random errors.

As one of the most universal methods, the ordinary 
least square (OLS) regression is frequently used for 
parameter estimate [32]. The estimation of β is given as 
Eq. (6) : 

YXXX '1' )( −=β


                      (6)

Two vital properties should be satisfi ed for OLS:

    (7)

When multi-collinearity exists between the variables, 
this variance will be small (which contrarily turns to be a 
large value), and the OLS estimates of coeffi cient become 
unstable, having large variance [33]. 

As a kind of improved algorithm, ridge regression 
added a non-negative factor k to the main diagonal 
of standard system matrix. Thus, the OLS estimation 
problem was solved by biased ridge regression parameter 
estimation as below:

 
              (8)

It has been demonstrated by Hoerl and Kennard that a 
series of k existed to ensure a smaller mean squared error 
(MSE) of ridge regression estimates than MSE of the 
ordinary least square estimates. Specifi cally, the estimator 
of ridge regression turned back to OLS estimator (β) under 
the situation k = 0.

The MSE[β ̂ (k)]rr and MSE[β ̂ (k)]ols are obtained, 
respectively, as follows:

(9)

             (10)

Empirical Results and Discussion

Data Source

Panel data used in the calculation process were obtained 
respectively from the Beijing, Tianjin, Heber, and Chinese 
statistical yearbooks, including per capita gross regional 
product (yuan/person) and population (year-end, 10,000 
persons). Although some variables are diffi cult to obtain 
directly in references, they can be fi gured out through 
fi xed formula.

Specifi cally, urbanization level is defi ned as a 
percentage of urban population; technological level is 
refl ected by the ratio of carbon emissions and the gross 
regional product, namely carbon emission intensity, 
which is a kind of regional energy effi ciency indicator. 
Industrial level and energy consumption structure are 
explained, respectively, as the secondary industry share of 
GDP and percentage of coal consumption to total energy 
consumption. 

Multicollinearity Test

For all of the independent variables, the multic-
ollinearity test should be taken to testify the drawback 
of OLS. Actually, social development, population, 
urbanization level, and GDP per capita would increase 
accordingly with economic development and social 
progress. Relying on the results shown in Tables 2 and 
3, it is clear that the correlations of more than half of the 
variables, including affl uence, population, urbanization, 
and technology level, are high and the VIF values, which 
is one of the most common criteria [34], of population, 
urbanization level, technological level, and GDP per 
capita are much higher than 10. That is to say, serious 
multicollinearity exists between these variables, which 
would be conducive to an unstable status to the regression 
coeffi cients. For the reason of possible interaction between 
variables, the variables’ marginal infl uence cannot be 
refl ected by the regression coeffi cients obtained through 
OLS.

Ridge Regression Estimation

The ridge regression method is adopted here in 
forming the multiple linear regression model to avoid 

Table 2. Results of correlation test.

lnA2 lnP lnUR lnT lnES lnI

lnA2 1

lnP 0.973* 1

lnUR 0.991* 0.942 1

lnT -0.996* -0.976 -0.988* 1

lnES -0.245* -0.442** -0.165** 0.272** 1

lnI 0.026 -0.096 0.024 0.027** 0.393 1
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the limitations of OLS. The validity of the proposed 
regression model can be checked by reliable indicators 
such as adjusted R2, t-test, and F-test. Table 3 demonstrates 
that the fi tting degree (adj. R2 = 1.000) is excellent and the 
regression equation is signifi cant (F-statistic Sig.<0.05). 
However, half independent variables are not signifi cant 
(t-Statistic Sig.>0.05).

The ridge regression is used to estimate the coeffi cients 
in the STIRPAT model. According to the ridge regression 
Eq. (8), ridge trace and the R2 versus k are respectively 
demonstrated by Figs1 and 2. To clearly show the change 
of regression coeffi cients and fi nd the least k value, only 
51 points have been drawn in Fig. 1 becaue the coeffi cients 
all maintain the stable trend with little change when 
k increase from 0.5 to 1. The standardized regression 
coeffi cients of each independent variable change quickly 
at fi rst with the increse of k value, and their coeffi cients 
sharply turn to be fi xed with few changes after k = 0.01. 
Fig. 2 shows that the R2 of ridge regression changes with 

a high change rate before k = 0.01, and the rate becomes 
much lower from the k value of 0.01. That is to say, the 
smallest value of k (k = 0.01) can be performed with a 
high adjusted R2 of 0.992. Thus, it is reasonable to choose 
k = 0.01 in this paper considering good interpretability. 

The F test can be passed with the result of F Sig. 
(Sig. = 0.0000005<0.05), which means there is a linear 
relationship between independent variables and dependent 
variable. Besides, the regression coeffi cient’s t Sig. of 
each independent variable and constant term also can 
meet the requirement (<0.05), which indicates that all 
of the independent variables should be in the regression 
equation. The details are presented in Table 4. 

Using ridge regression, the model is:

lnCE = -14.03 + 0.1045ln A2 + 
1.59ln P + 0.0274ln T + 0.6857lnUR 

+ 0.4235ln ES + 0.9679lnI  
(11)

According to the predicted value (from 2000 to 
2012) calculated by Eq. (11) and real CO2 emissions, the 
maximum absolute value of relative error is measured at 
0.6%. That is to say, this is a proper model with a high 
quality of fi t.

Analysis of Results of 
Ridge Regression

The empirical results demonstrate that the values of 
independent variables’ coeffi cients are as expected. The 
relationships between CO2 emissions and each independent 
variable are positive. According to the ridge regression 
result, not only the augmented population, GDP per 
capita, and urbanization levels, but also the deteriorative 
promotion of energy structure and the secondary industry 
level are conducive to CO2 emissions’ increase. Besides, 

Table 3. Results of OLS regression.

OLS result Unstandardized 
coeffi cient

t-Statistic 
Sig. VIF

Constant -7.359 0.116

lnA2 .412 0.000 934.578

lnP .743 0.089 257.123

lnUR 0.469 0.020 206.301

lnT 0.946 0.000 216.777

lnES 0.001 0.994 6.977

lnI 0.223 0.101 3.145

Adjusted R2 1.000

F-statistic Sig. 0.000

Fig. 1. Curves of ridge t  race.
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the advance of technology level – namely the decrease in 
CO2 emissions per unit of GDP – results in an adverse 
infl uence on carbon emissions. The importance of each 
impact factor can be expressed by the absolute values 
of variables’ coeffi cients. Population holds the largest 
effect on emissions, followed by secondary industry level, 
urbanization level, energy consumption structure, the 
squared term of GDP per capita, and technology level in a 
downward trend. Next we discuss the infl uences of these 
independent variables on CO2 emissions.

Population

The growth of population generates the largest increase 
on the scale of the Beijing-Tianjin-Hebei region’s carbon 
emissions with an elastic coeffi cient at 1.59, which means 
a 1.59% growth in CO2 emissions from every 1% growth 
in total population. As the political and economic center, 
the region’s average population growth rate of more than 
1.4% is 2.46 times as high as China’s from 2000 to 2012. 
The high growth rate mainly contributes to the constant 
increase of immigrants.

The Secondary Industry Level

CO2 emissions are less responsive to changes in 
this factor, which is defi ned by the percentage of the 

secondary industry (elastic coeffi cient = 0.9679) including 
mining, manufacturing, electricity, water production, 
supply industry, and construction sectors. The elastic 
coeffi cient illustrates a 0.9679% growth in CO2 emissions 
owing to a 1% increase in the secondary industry level. In 
the phase of urbanization and industrialization, although 
it is normal for secondary industry dominating the 
largest percentage among the whole industry in China, 
the percentage of the secondary industry in Beijing, 
Tianjin, and Hebei fl uctuates year-to-year in intervals of 
from 41% to 45.16%, which were always lower than the 
percentage of the third industry over the last 13 years. 
Due to the fact that the secondary industry consumes a 
majority of energy during its production, its progressive 
decrease seems to be a key promotion to the decrease of 
CO2 emissions. 

Urbanization Level

Urbanization level plays an important role in the 
infl uence on CO2 emissions. The elastic coeffi cient is 
0.6857 based on the result, indicating a 0.6857% increase 
in the CO2 emissions owing to a 1% increase in percentage 
of urban population in total. The growth of demand for 
energy is associated with urbanization level, which in turn 
leads to more CO2 emissions. This circumstance can be 
explained by the modern lifestyle in the urban area, where 
people tend to consume more energy to ensure convenient, 

Table 4. Results of tests   for each independent variable and constant.

constant lnA2 lnP lnT lnUR lnES lnI

Student’s test -2.57** 6.65*** 3.45** 1.87* 3.28** 1.42* 2.64**

Note: *** signifi cant at 1%, ** signifi cant at 5%

Fig. 2. Changes of k under different RSQ.
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comfortable, and rich living conditions. Through analysis 
of data, both the number and average growth rate of the 
proportion of urban population in the Beijing-Tianjin-
Hebei region are higher than China’s average level from 
2000 to 2012. 

Structure of Energy Consumption

In the long run, all of China, including the Beijing-
Tianjin-Hebei region, relies on the traditional coal-
intensive energy structure. Thus coal consumption to total 
energy consumption (elastic coeffi cient = 0.4235) is the 
best indicator to describe energy structure. The elastic 
coeffi cient shows that every 1% increase in percentage 
of coal consumption industrialization level leads to a 
0.4235% increase in CO2 emissions. Coal also occupies 
a vital position in the Beijing-Tianjin-Hebei region’s 
energy consumption in the past 12 years. From 2000 to 
2012, coal took up a large share of 78.45% in total energy 
consumption, which was even higher than the average 
level of all of China [35].

The Square Term of GDP per Capita

The impact of A2 on CO2 is comparatively lower with 
an elastic coeffi cient at 0.0865, which illustrates that CO2 
emissions increased by merely 0.1045% when the square 
term of GDP per capita increased 1%. The Beijing-Tianjin-
Hebei region would bear more gradually increasing 
pressure from CO2 emissions followed by growth of 
population, energy consumption, and living cost, which is 
to some extent an unavoidable process for rapid economic 
development at this period.  

Technology Level

Technology level is presented by the CO2 intensity 
(CO2 emissions per unit of GDP), which has a minimal 
regression coeffi cient of 0.0274, meaning that a one 
percent increase in technology level leads to 0.0274% 
change in CO2 emissions. Coming with technological 
innovation, a continual decrease in CO2 intensity is helpful 
for reducing carbon emissions. The data of the Beijing-
Tianjin-Hebei region shows a gradual decline in the phase 
from 2000 to 2012, and this trend tends to proceed with a 
reducing change rate.

Scenario Designs for the Possible Peak Value 
of CO2 Emissions

Design of Driven factors

Based on the model established in this paper, eight 
kinds of scenarios aimed at the Beijing-Tianjin-Hebei 
region’s socio-economic development in the coming 38 
years, are established to make a forecast of CO2 emissions. 
In this paper, the future trend of each factor is divided, 
considering different social, economic, and technological 
policies, and lifestyle and relative targets, into three 

situations with different speed (low, medium, and high). 
The driven factors are reliably designed on the following 
details, and Table 5 provides the variations of each factor.

Population 

From 2000 to 2012 the average population growth rate 
in the Beijing-Tianjin-Hebei region was much higher than 
in the whole China. Zhang et al. [36] analyzed the trend 
of the region’s population through the cohort-component 
method. They concluded that the average growth rate 
from 2013 to 2020 showed no clear sign of decline and 
the growth rates of low, medium, and high models are, 
respectively, 0.8%, 1.1%, and 1.2%. Additionally, the 
region is an administration center rather than an ordinary 
economic development zone in China. Although there 
are many solutions and relative policies to inhibit the 
growth of population, the large number of immigrants still 
puts severe pressures on this region to reach maximum 
population around the year 2030. Thus, the population 
peaks, respectively, in 2030, 2035, and 2040 in the low, 
medium, and high models. 

The Urbanization Level 

The ratio of urban population in the region, maintaining 
a distinct increasing tendency, was higher than China’s 
average level from 2000 to 2012. Additionally, the ratio of 
urban population in the Beijing-Tianjin-Hebei economic 
band was only 55.01%, which is lower than the ratios 
in the other two important economic support zones of 
China – the Yangtze River Delta and the pan-Pearl River 
Delta – by, respectively, 8.69 percentage points and 27.69 
percentage points. All of this shows the potential for the 
Beijing-Tianjin-Hebei economic band to reach a higher 
extent of urbanization. Thus, the percentage of urban 
population in this district is designed to be 83% through a 
period of 38 years under a high tempo. The urbanization 
level gradually increased to 79% and 70%, respectively, 
under medium and low, which were designed after 
consulting LBNL, ERI, and UNDP. 

GDP per Capita

The assumption about GDP per capita is based on 
a regulation that growth rate of GDP per capita would 
gradually be reduced with economic development [37]. 
This article fi rstly set the variation tendency of GDP. 
Then, the corresponding GDP per capita can be calculated 
with the given data of population. In this research, both 
low and medium modes have the same growth curve of 
GDP, which is set mainly according to the output of ERI. 
Actually, the variation of GDP per capita (from 2013 to 
2050) in these two conditions can be different because they 
would be divided by a different number of population. The 
growth rate of GDP with high speed is set a little higher 
than the others considering the Beijing-Tianjin-Hebei 
economic band’s advantage of economic development. 
The calculated GDP per capita to the year 2050 under a 
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high model is more than $60,000US. This can be regarded 
as a reasonable assumption for the reason that the value is 
similar to the GDP per capita of the developed countries in 
2013, such as Denmark ($60,564) and Australia ($61,219) 
[38].

The Secondary Industry Level

The level is the ratio of the secondary industry. ERI and 
UNDP have similar conclusions about industry structure 
[14, 15, 2], where the secondary industry share of GDP in 
2050 is in the interval from 36% to 38%. Thus, to 2050 the 
secondary industry model levels of low, medium, and high 
are respectively designed as 36%, 37%, and 38% under 
different change rates.

Energy Construction 

The demand for primary energy will increase until 
2050 in the Beijing-Tianjin-Hebei region at a slower 
rate. And the coal in the primary energy would count as 
a large proportion for a long time. Although degrees are 
various, kinds of ratio of coal in different research are in 
a downward trend. The basic scenario and low carbon 
emissions scenario of IEA [1] present the ratio of coal as 
56% and 30% – similar to the forecast in ERI [14, 15]. So 
it is reasonable to suppose the proportion of coal under 
low, medium, and high mode as, respectively, 56%, 40%, 
and 30%. 

Technological Level

In China, the diffi culty of this level would increase 
along with the going on of governance. Namely, the 
decline rate in CO2 emissions per unit of GDP would 
gradually decrease. The data from 2000 to 2012 illustrate 
that the CO2 intension in the Beijing-Tianjin-Hebei region 
is in a decrease trend due to the continually technological 
reformation. According to the output of UNDP, to the 
year of 2050 the reduced carbon emissions intensity is 
73% under the basic scenario, and the carbon emissions 
intensions under the emissions control (EC) scenario and 
emissions abatement (EA) scenario are, respectively, 58% 
and 34% of the value in the basic scenario. Hence, the 
technological levels in 2050 under low, medium, and high 
models will, respectively, take the proportion of the value 
in 2010 by 68.7%, 40%, and 23.5%.

Design and Selection of Scenarios

Based on these designs of driven forces, eight scenarios 
for the period covered from 2013 to 2050 are devised to 
forecast the situation of carbon emissions. Succinctly put, 
all of the factors are divided into two groups. Group one 
contains population, urbanization level, and GDP per 
capita, which mainly retains an upward trend in future 
decades and has a positive impact on CO2 emissions; 
group two includes secondary industry level and energy 
construction and technological level, which are predicted 

Table 5. The different modes o    f each driven factors.

Variables Modes Targets

Population

Low speed Population reach a peak by 2030

Medium speed Population reach a peak by 2035

High speed Population reach a peak by 2040

Urbanization level

Low speed The level is 70% in 2050

Medium speed The level is 79% in 2050

High speed The level is 83% in 2050

GDP per Capita (yuan)

Low speed GDP per capita is more than 50000 in 2050

Medium speed GDP per capita is more than 53000 in 2050

High speed GDP per capita is more than 68000 in 2050

Secondary industry level

Low speed The level is 38% in 2050

Medium speed The level is 37% in 2050

High speed The level is 36% in 2050

Energy construction

Low speed The level is 56% in 2050

Medium speed The level is 40% in 2050

High speed The level is 30% in 2050

Technological level

Low speed The level in 2050 is 55% lower than the 2012 level

Medium speed The level in 2050 is 73% lower than the 2012 level

High speed The level in 2050 is 84% lower than the 2012 level
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to be on a gradually downward trend and help to stop 
the increase of CO2 emissions. Table 6 provides the clear 
instruction of different scenarios.

Scenario 1: This scenario is an embodiment of the 
basic situation. Economic growth and development 
will still be primal, but several extra policies might be 
announced to spread low-carbon measures, helping slow 
down economic development to some extent. Urbanization 
level will increase at a relatively quick rate with regional 
development, which will be 79% in 2050. Population will 
be high in the fi rst decade and decrease quickly to reach a 
peak in 2035. As for energy construction and technological 
level, there is only a maintenance of current mainstream 
technologies such as supercritical and ultra-supercritical 
technology, and the dominant source of primary energy 
will still be coal, but with a smaller share. 

Scenario 2: Compared with S1, S2 pays more attention 
to energy conservation with all of the factors in group two 
changing at medium speed. The ratio of coal will decrease to 
40% due to more use of oil and natural gas. There will also 
be a quickly enlarged demand for nuclear power and non-
hydro renewable energy technologies, but their shares are 
still little. The existing technologies will be broadly used to 
increase generating effi ciency, but new technologies, such 
as CCS, would not be considered. With the transfer to the 
advanced stage of industrialization, the secondary industry 
share of GDP will decline with a clear aim.

Scenario 3: This scenario will mainly focus on 
economic development and urbanization. The urbanization 
level in this district will eventually exceed the level in the 
Pearl River Delta and the GDP per capita will be more 
than $60,000 by 2050, which is similar to Denmark’s 
current situation.

Scenario 4: Similar to Scenario 3, the driving factors 
belonging to group two will be given more concern, but 
the increasing speed of GDP per capita, population, and 
urbanization level will not decrease. In S4, the GDP per 
capita, population, and urbanization level will keep high 
mode, reaching a high standard in 2050, and the CO2 
emissions will not be out of control owing to a widespread 
exertion of expensive low-carbon technologies such as 
electric motors, nuclear power, and carbon capture and 
storage (CCS). The government will incentivize the 

expansion of new renewable technologies such as wind 
power and solar power to change the dominant status of 
coal. 

Scenario 5: As a comparison with S4, this scenario 
focuses on the impact on CO2 emissions of medium 
economic, population, and urbanization development. 
Under the same development trend of industry and energy 
technology, the medium speed of economics, population, 
and urbanization might eventually decrease carbon 
emissions in the Beijing-Tianjin-Hebei region for the 
reason that socio-economic, population development, and 
urbanization factors can be controlled to some extent in 
China.  

Scenario 6: In S6 all of the independent variables will 
vary at low speed, which is actually an economic recession 
scenario. The population will peak in 2030 and the rate 
of economic development will be extremely low in 2050. 
Besides, up until 2050 the urbanization level will be 70% 
– even lower than Pearl River Delta Region’s current 
level. This kind of design means faint development in this 
region and low emissions at the same time. So, the CO2 
emissions will still reach their maximum value before 
2050, although the solutions and governance about energy 
consumption, industry structure, and carbon abatement 
technology are slender. 

Scenario 7 focuses more on environmental protection 
compared with S6.

Scenario 8: S8 pays much more attention to the rise 
of the economy, population, and urbanization (in high 
model), but less to industry level, energy construction, and 
technological level (in low model). The situation of CO2 
emissions might be out of control with so much partiality 
to socio-economic development. 

Analysis Based on Predicted CO2 Emissions 
of Different Scenarios

In this paper the changing track of each independent 
variable can be obtained through the situations described 
previously. Subsequently, the CO2 emissions in different 
scenarios can be predicted through the STIRPAT model. 
Different predicted tracks of CO2 emissions in the period 
from 2013 to 2050 are shown in Fig. 3.

Under the basic scenario (S1), the CO2 emissions in 
the Beijing-Tianjin-Hebei region will grow quickly to 
1,187.5 million tons in 2030 and increase with a moderate 
trend to 1,296.2 million tons in 2050. 

In S2, the emissions will turn to decrease after 2039. 
The total volumes of CO2 emissions in 2050 and in 2028 
are similar, but the GDP per capita and ratio of urbanization 
will see dramatic growth. Under S2, more solutions will be 
implemented as a promotion to energy effi ciency, the drop 
of carbon intensity and adjustment of energy structure. 
Besides, alternation of the industry structure is essential 
for the Beijing-Tianjin-Hebei region to decline its ratio of 
secondary industry. As a result, by 2050 the CO2 emissions 
in S2 will be lower by 215.5 million tons than in S1. 

In S3 the Chinese Government will contribute to 
establishing a fl ourishing society under a moderate input 

Table 6. Parameter designs of ei  ght scenarios.

Scenario P A UR T I ES

S1 M M M L L L

S2 M M M M M M

S3 H H H M M M

S4 H H H H H H

S5 M M M H H H

S6 L L L L L L

S7 L L L M M M

S8 H H H L L L
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in controlling emissions. To satisfy the aim of economic 
development in the studied region, local government will 
try to introduce more talent and insist on urban construction. 
The expansion of urbanization cannot be avoided during 
this period [39]. The similar improvement level of 
technology, energy consumption, and industry adjustment 
with S2, increased GDP, urbanization, and population will 
cause growth in carbon emissions. Thus, considering the 
restrictions imposed by technology, industry construction, 
and clean energy supply capabilities, CO2 emissions in S3 
will rise to 1,252.4 million tons in 2045 and be reduced to 
1,249.2 million tons in 2050. 

In S4, governments in the studied region will treat 
economic development as a fundament to invigorate 
its quality of life and will make tight advancement 
to technology, industry, and new energy. S4 is quite 
appropriate in terms of emissions, but governments will 
bear considerable pressures to reach emissions targets. 
In this scenario, except for the broad use of supercritical 
and ultra-supercritical technology, more investments will 
be made in integrated gasifi cation combined-cycle plants 
(IGCC) as well as carbon capture and storage (CCS). The 
ratio of coal consumption will gradually decrease in order 
to generate more electricity from nuclear, hydro, and wind 
power. Additionally, the ratio of the secondary industry 
will be reduced during the process of GDP growth. Labor-
intensive industries as well as capital-intensive industries 
would be improved fi rst in the decreasing process. Under 
this scenario, China’s CO2 emissions would decline from 
1,060.7 million tons in 2040. 

Under S5, the CO2 emissions turn to reduce in 2029 
presents the best consequence of emissions among all 
these scenarios. The same melioration about technology, 

energy consumption, and the secondary industry with 
S3 makes it technologically possible for the Beijing-
Tianjin-Hebei region’s control of CO2 emissions. Besides, 
population, GDP per capita, and urbanization levels are all 
in the medium increase mode, which means fewer sources 
of emissions. The CO2 emissions in S5 will arrive at peak 
in 2029. 

Economic development has been ranked fi rst for a long 
time in the Beijing-Tianjin-Hebei region. Thus, solutions 
for emission problems should come with no negative 
infl uence on socio-economic development. The status of 
CO2 emissions in S6 and S7 show well. However, these 
two scenarios cannot be accepted because of their low 
development speed.      

The curve of S8 is a contrast with S3 and S4. The 
emission fi gure under S8 will continue to grow at 1,498.3 
million tons, which is, respectively, 19.9 percent and 
41.3 percent more than emissions under S3 and S4. The 
enormous disparity of CO2 emissions demonstrate that 
investment in technology, energy consumption, and 
industry adjustment is essential and rewarding.

Development Strategies for Low 
CO2 Emissions

Considering the emissions and socio-economic 
development of these scenarios, S2, S4, and S5 represent 
satisfi ed outputs. Under these three scenarios, low-carbon 
strategies, including a decrease of carbon intensity, 
improvement of energy effi ciency, and adjustment of 
industry structure, will be performed. Meanwhile, the 
economy, population, and urbanization will develop at a 
high or medium speed. 

Fig. 3. Curves of CO2 emissions under eight scenarios.
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In terms of industry structure, there is a distinction among 
Beijing, Tianjin, and Hebei: the energy-intensity industries 
in Beijing will be less concentrating in car assembly. At the 
same time, more high-tech and cultural industries will be 
built to increase its ration of the third industry; Tianjin’s 
governments will focus on the non-agricultural processing 
industry, especially the electronic information industry 
and advanced manufacture. Under the continuation of 
the mining industry and electricity generating, Hebei 
will strictly control the total expansion of industries with 
extensive energy consumption and emissions.

Decreasing the ratio of coal to total energy consumption 
offers an important tool to low-carbon emissions. First, the 
IGCC will be improved continually based on the existing 
appliance in Tianjin. In addition to scaling up the use of 
natural gas, local government will also actively accelerate 
the development of hydro, wind, solar, and nuclear power 
in a safe and effi cient manner. Local governments should 
also proactively develop geothermal, bio, and maritime 
energy. Besides, the expansion of distributed energy 
would provide residents with a convenient and effective 
electricity manner. 

Controlling emissions from building and transportation 
sectors is very important support for low-carbon targets. In 
future decades, local governments will gradually promote 
the share of green buildings in newly built building of 
cities, which means the application of non-fossil energy in 
daily life and acceptable energy-saving construction, such 
as advanced ventilation systems and low-cost and effi cient  
solar PV buildings. For transportation, more incentive 
measures will be promoted and optimized to establish a 
green transportation system. For example, the share of 
public transport with green fuels will be improved and 
measures for the convenience of pedestrians and bicycles 
will become enriched. Moreover, with technological 
innovation, urban rail transport will fi rst be popularized, 
followed by hybrid vehicles, and then fuel cell vehicles as 
well as effi cient pure electric vehicles. 

As for technology, more improvement will be carried 
out about power industry and steel industry to reduce 
the energy consumption and CO2 emissions. For power 
industry, IGCC will be scaled up-in Tianjin’s power 
plant; large-scale offshore wind power generation will 
also be feasible in Tianjin because of its location by the 
sea; and more new tech, such as low cost CCS, solar 
nanotechnology photovoltaic, and large-scale electricity 
storage systems for intermittent power supply will be 
gradually exploited after 2030 in Hebei province. As for 
the steel industry, pulverized coal-injection technology, 
residual heat and pressure recovery, and smelting reduction 
technologies including COREX, FINEX, and coal moisture 
control are becoming popular in the Beijing-Tianjin-Hebei 
region; local governments will try to introduce and spread 
SCOPE21 coking technology to improve production 
effi ciency; and the investment in low-cost CCS technology 
will increase and be applied after 2030.  

Conclusions

In this study, the extended STIRPAT model was 
established as a foundation to research the future footprint 
of CO2 emissions in the Beijing-Tianjin-Hebei region. The 
squared term of GDP per capita, population, technological 
level, urbanization level, coal consumption to total energy 
consumption, and the secondary industry share of GDP 
were innovatively applied together as driven factors 
of emissions in this paper. In addition, eight different 
scenarios were set to seek the maximum CO2 emissions. 
According these scenarios, we fi nd that the control 
about energy effi ciency, energy construction, industry 
construction, and technological level in future decades 
were signifi cant for the Beijing-Tianjin-Hebei region to 
ensure low carbon emi  ssions. The analysis of scenarios 
drawn by this study is useful for the local government to 
design relative strategies. Although with large pressure the 
CO2 emissions would turn to decrease before 2050 in the 
Beijing-Tianjin-Hebei region, and there would be at least 
three reasonable development models where the economy 
as well as social level would develop with a relative 
high speed. The study also proposed a series of solutions 
to improve the effi ciency of energy and resource use, 
optimize industry construction and technological level, 
and reduce emissions and mitigate the adverse impact of 
climate change. 

This paper gives us a direction about low-carbon 
development. However, many aspects are worthy of 
further study to provide local governments with more 
useful advice. The government would pay more attention 
to build an energy-saving and low-carbon society with 
human development, sustainable economic development, 
and stable urbanization.  
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